A new inequality for the von Neumann entropy
نویسنده
چکیده
Strong subadditivity of von Neumann entropy, proved in 1973 by Lieb and Ruskai, is a cornerstone of quantum coding theory. All other known inequalities for entropies of quantum systems may be derived from it. Here we prove a new inequality for the von Neumann entropy which we prove is independent of strong subadditivity: it is an inequality which is true for any four party quantum state, provided that it satisfies three linear relations (constraints) on the entropies of certain reduced states.
منابع مشابه
The Quantum Theil Index: Characterizing Graph Centralization using von Neumann Entropy
We show that the von Neumann entropy (from herein referred to as the von Neumann index) of a graph’s trace normalized combinatorial Laplacian provides structural information about the level of centralization across a graph. This is done by considering the Theil index, which is an established statistical measure used to determine levels of inequality across a system of ‘agents’, e.g., income lev...
متن کاملA Variational Expression for the Relative Entropy
We prove that for the relative entropy of faithful normal states φ and ω on the von Neumann algebra M the formula S(φ,ω) = sup{ω(Λ)-logφ(/): h = h*eM] holds. In general von Neumann algebras the relative entropy was defined and investigated by Araki [1, 3]. After Lieb had proved the joint convexity of the relative entropy in the type / case [10] several proofs appeared in the literature and they...
متن کاملCalculating Different Topological Indices of Von Neumann Regular Graph of Z_(p^α )
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr...
متن کاملA determinant inequality and log-majorisation for operators
Let $lambda_1,dots,lambda_n$ be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)
متن کاملRényi divergences as weighted non-commutative vector valued $L_p$-spaces
We show that Araki and Masuda’s weighted non-commutative vector valued Lp-spaces [Araki & Masuda, Publ. Res. Inst. Math. Sci., 18:339 (1982)] correspond to an algebraic generalization of the sandwiched Rényi divergences with parameter α = p 2 . Using complex interpolation theory, we prove various fundamental properties of these divergences in the setup of von Neumann algebras, including a data ...
متن کامل